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Finding a solution to optimization affected by parameter uncertainty is
a well-studied problem. Robust Optimization provides an approach to opti-
mization under uncertainty, where the uncertainty model is not stochastic,
but deterministic and set-based. A solution that is feasible for any realiza-
tion of the uncertainty in a given set is constructed in a geometrical and
tractable fashion.

Uncertainty sets in robust optimization should specify most or all of
the possible realizations from the input, typically corresponding to a confi-
dence level under an assumed distribution. Therefore, robust formulations
of optimization problems rely very much on uncertainty sets.

In this project we discuss the theory of data-driven construction of uncer-
tainty sets, we implement these sets in two optimization problems in discrete
optimization and portfolio optimization, and analyze the best choice of sets.

1 Data-Driven Framework

A big issue in RO includes tractability of several data-driven uncertainty sets
as outlined by [2]. It involves the issue of how to structure the uncertainty
set U so that the resulting problem is tractable and optimally trades off
expected return with loss probability, in the terms of portfolio optimization.
We investigate this issue.

1.0.1 Hypothesis Tests and Distributional Uncertainty

A hypothesis test compares two hypotheses, a null-hypothesis H0 and an
alternative hypothesis HA where each makes a claim about an unknown
distribution P∗.

Given a significance level 0 < δ < 1 and some data that is drawn from
P∗ denoted by X, the test will prescribe a threshold that depends on δ and
statistic that depends on X.

If the statistic exceeds the threshold then the hypothesis is rejected, in
favor of the alternative.

In the scheme we follow in [2], the key is the use of the confidence region
of a statistical hypothesis test to quantify our knowledge about P∗ from the
data. We have the given assumption that the data is drawn i.i.d. from an
unknown distribution P∗. Then [2] argues that sets that are constructed
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from the scheme as described in Section 1.1 give a probabilistic guarantee
for P∗ at any ε > 0.

The interest in hypothesis tests and confidence regions comes from the
following observation: when the assumptions of a hypothesis test hold, then
the probability, with respect to sampling procedure, that the true distribu-
tion of the data P∗ is a member of its confidence region is at least 1 − δ.
Even without knowing P∗, it is possible to use a hypothesis test to create
a set of distributions from the data which will contain P∗ for any specified
probability, and therefore they play a major role in designing uncertainty
sets. It is possible to substitute the confidence region of a hypothesis test
into the possible values for P to take within our ambiguity about the true
distribution P∗ and this relates the support functions of the uncertainty sets
with the confidence regions.

More formally, [2] describes the connection between the support function
of any set U , denoted as φU (x) = maxu∈U u

Tx and the Value at Risk at level
ε with respect to x. A risk measure is a central tool in many optimization
problems, as it determines in which assets to distribute the total, and the
Value-at-Risk is a measure of loss that can be described in a statistical for-
mulation involving hypothesis tests. Given a confidence level α ∈ (0, 1), the
VaR at α is the smallest number ` such that the loss L exceeds L with a
probability of at most (1− α). In other words, for L the loss of a portfolio,
V aRα(L) is the level α-quantile. Since support functions of convex sets are
convex and positively homogenous, there is also a relationship to the concept
of a coherent risk measure ρ; that is, a risk measure that satisfies certain
desirable properties such as monotonicity, sub-additivity, homogeneity, and
translational invariance. Properties such as sub-additivity and positive ho-
mogeneity imply convexity. So in constructing the support function φ we
define φ as the optimal upper bound ρ of the VaR, which has a nominal
bound by some ρ, which forms a convex upper bound.

1.1 Data-driven Choice of Uncertainty set procedure

We describe the theory behind the construction of data-driven sets that we
will use. As given in [2], the following procedure describes the procedure in
finding an ideal uncertainty set. Fix a 0 < δ < 1 and 0 < ε < 1.

1. Let P(A) be the confidence region of a hypothesis test at level δ for
data A.
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2. Construct convex, positively homogenous function φ(x,A) such that

sup
P∈P(A)

V aRP
ε (x) ≤ φ(x,A)∀x ∈ Rd.

3. Identify set U whose support function coincides with φ.

This scheme follows from the proposition [[2] Proposition 1] stating that,
Proposition. A set U implies a probabilistic guarantee for P at level ε if
and only if

φU ≥ V aRR
ε (x)∀x ∈ Rd. (1)

The proposition implies that an ideal set would satisfy φU (x) = V aRP∗
ε (x)∀x ∈

Rd, and if such a set U was found, it would be the smallest (and therefore
most efficient) set that implies a probabilistic guarantee, of probability 1−δ.

This describes the theoretical procedure in the construction of these sets,
and implies certain directions in choosing certain sets. But ultimately, we
will use cross-validation to make the best choice of uncertainty sets.

2 Robust Discrete Optimization

We take a problem from Robust Discrete Optimization, and examine how
the choice of uncertainty set affects its solution in the robust formulation of
the discrete optimization problem.

The binary knapsack problem is:

max
∑
i

cixi

subject to
∑
i

wixi ≤ q

x ∈ {0, 1}n.

where q is the knapsack capacity and the weights are uncertain, indepen-
dently distributed and are from symmetric distributions in [wi − δ, wi + δ].
This interval is the uncertainty set, where at most Γ coefficients can change
from nominal value wi to an arbitrary value in the interval. Therefore, the
uncertainty lies in the value of the weights wi.

Γ is also the level of guarantee with respect to data uncertainty that is
desired, which is used in a standard polyhedral uncertainty set formulation
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of the problem, as
∑

i zi ≤ Γ. We may assume that q = 1 and that each
item forms a robust solution independently, wi + δi ≤ 1∀i ∈ N.

In our robust formulation of this problem, we replace the weight con-
straint equation with the constraint that the weight is within the chosen
uncertainty set. Therefore, the robust 0/1 knapsack problem is given by:

max
∑
i

cixi

subject to
∑
i

(wi + δizi)xi ≤ q ∀z ∈ U

x ∈ {0, 1}n,

for our suitable choice of uncertainty set U .
In our example, we use the normal distribution as the empirical probabil-

ity distribution p̂ that generates the costs and weights data and assume that
it has known, finite support within a set of values, denoted by α, where its
function is nonzero. This forms the apriori assumption on the distribution.
Then we can pair this with a certain hypothesis test. Since it is a discrete
distribution, [2] prescribes the use of the χ2 test to construct the confidence
regions and the uncertainty set. We use the Uχ2

.
In the julia code, we will generate size N samples of values within [0, 1]

from the normal distribution, and set these to the alphas that form the
support of the probability distribution.

In the following table, we list the sizes of costs and weights and the
solved optimal value of vector x, given capacity value of 10.

size
∑

i cixi x

7 1.39667 [0.0,1.0,1.0,0.0,1.0,1.0,1.0]

10 5.03221 [0.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0]

15 4.72247 [0.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0]

20 3.42998 [0.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0]

Table 1: Chi-squared Uncertainty Set optimized values

These values in Table 1 may be compared to the solutions yielded by the
polyhedral uncertainty set in Table 2.
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size
∑

i cixi x

7 1.39667 [0.0,1.0,1.0,0.0,1.0,1.0,1.0]

10 5.03221 [0.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0]

15 4.72247 [0.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0]

20 3.42998 [0.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0]

Table 2: Polyhedral Uncertainty Set optimized values

2.0.1 Analysis of results

We may analyze the effectiveness of these solutions by looking at the pa-
rameter we wanted to maximize,

∑
i cixi.

For all of the sizes, we see that the value
∑

i cixi does not differ, and the
choice of uncertainty set does not change the effectiveness of the solution.

3 Time Series Data-based Optimization

There are relevant optimization problems using financial time series, includ-
ing portfolio selection, asset allocation, and risk management.

The problem we examine is the risk aversion formulation of the mean
variance portfolio optimization problem, called the min-max robust mean
variance portfolio problem.

Given a time series data set of prices for an asset, T = {p1, · · · , pN} of
prices at times ti, the returns are given by Ri = pi/(pi−1 − 1), the expected
return is given by R =

∑
iRi/N, and variance by V =

∑
i(Ri−R)2/N . Let

µ ∈ Rn be the vector of mean returns µ = R/N of the n risky assets and Q
be the positive semi-definite covariance matrix.

We can construct a portfolio of n assets with portfolio percentage weights
xj whose sum is bounded by 1,

xj , j = 1, · · · ,m,
∑
j

xj = 1

and this gives portfolio return R′ =
∑

j xj ∗ Rj and variance V ′ and

mean and variance of the portfolio return are expressed as (xTµ, xTQx) for
Q = Cov(rt), where µ is the random vector of mean returns. Now a mean
value efficient portfolio solves the problem:

min
x
−µTx+ λxTQx (2)

s.t. x ∈ Ω (3)
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for each risk aversion parameter, λ ≥ 0 (typically between 1 and 10 [1])
and Ω the feasible portfolio set given by Ω = {x ∈ Rn| eTx = 1, x ≥ 0} for
e the vector of all ones (weight constraint).

Indeed, to choose an optimal portfolio, one can choose λ = 0 for the
maximum-return portfolio, or choose the maximum λ for the minimum-
variance portfolio, to avoid risk. The efficient frontier is a curve in the
space of standard deviation and mean, which outlines the feasible portfolio
which outlines possible solutions from the maximum-return to the minimum-
variance portfolio. Even when future risks and returns are assumed to be
known, there is a lot of uncertainty involving investment decisions; for a
correct forecast of 10% return and 20% standard deviation, the range of
possible returns is approximately −10% to 30% two-thirds of the time [4].

The min-max robust formulation of the original mean-variance problem
is:

min
x

max
µ∈Sµ,Q∈SQ

−µTx+ λxTQx (4)

s.t. x ∈ Ω (5)

for uncertainty sets Sµ, SQ, and its formulation illustrates the interest in
solving for the optimal efficient frontier.

For a known covariance matrix Q from data, the uncertain parameter
arises in the mean returns of assets µ[3].

So the robust formulation, given the choice of uncertainty set, may be
given by,

min
x
− µTx+ λxTQx ∀µ ∈ Uµ (6)

s.t. x ∈ Ω (7)

We may further explain the derivation of this robust formulation in the
Appendix.

Now we must choose the set Uµ for the time series data.
We will implement this as well as the formulations involving data-driven

uncertainty sets. The times series data is from the WRDS library[5], the
data for the monthly expected returns for stocks from certain companies is
given over a period of several years.

3.1 Times Series Experiment

The Ebay dataset consists of monthly assets in 5 categories: Holding Pe-
riod Returns, Holding Period Returns without Dividends, Value-Weighted
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Returns (includes distributions), Value-Weighted Returns (excluding divi-
dends), and Equal-Weighted Returns (includes distributions). The dates are
from January 2007 to December 2015.

Now we use sets UMε ,UCSε . We do not consider sets UIε ,UFBε since we do
not know apriori that the returns are independent, and we do not use UDY
since it requires data with larger magnitude than the data we use, which
has been adjusted according to the total market. We compare the results
with the results given by the polyhedral uncertainty set.

Using the polyhedral uncertainty set yielded results such that the prob-
lem was not bounded, and after scaling the return samples by 100 times, it
yielded the solution vector, [0.0, 0.0, 1.0, 0.0, 0.0], showing that the set does
not handle this optimization problem well in julia.

We set α, ε ∈ [10, 30]% for all the sets, and record the results for different
parameters.

We have the following optimal portfolios given in Table 3 and Table 4.

(α, ε) UCS portfolio

(0.2, 0.2) [0.09914,0.15208,0.27303,0.25735,0.21839]

(0.3, 0.2) [0.13124,0.16626,0.31077,0.27948,0.11225]

(0.3,0.1) [0.11567,0.13724,0.32804,0.18252,0.23652]

(0.2,0.155) [0.15485,0.14312,0.21336,0.32789,0.16079]

Table 3: UCS Set optimized portfolios

(α, ε) UM portfolio

(0.2, 0.2) [1.8637e-7,1.8637e-7,0.9999,4.08738e-7,6.8246e-7]

(0.3, 0.2) [7.48245e-10,7.48246e-10,0.99999,1.38422e-7,1.28718e-9]

(0.3,0.1) [7.48245e-10,7.48246e-10,0.99999,1.38422e-7,1.28718e-9]

(0.2,0.155) [5.2239e-10,5.22348e-10,0.9999,4.00815e-6,1.7466e-9]

Table 4: UM Set optimized portfolios

We plot figures of the estimates in the Appendix (for α = 0.2, 0.2, ε =
0.3, 0.2). Looking at the weight percentages that are assigned to each of
the 5 different assets, we see that the UCS set assigns weights more uni-
formly throughout the portfolio, while the UM set tends to place most of
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the weight on one asset. We can explain the phenomenon shown since UM
does not use the joint distribution and it therefore does not see benefits to
diversification[2]. As a consequence, it invests all its wealth in the asset that
appears to have the best worst-case quantile given the data. In contrast,
UCS is able to learn the covariance structure and from this, it is able to
diversify across the assets, leading to a more evenly diversified portfolio.

3.2 Analysis and choosing models/parameters via cross-
validation

Cross-validation is used to evaluate the fit of the model. The procedure
consists of the following steps:

1. Partition data into training, validation, and test sets

2. Find optimal model on the training set and use the test set to check
its predictive capability

3. See how well the model works on the test set to give the validation set

4. The validation error gives unbiased estimates of the power of the model
to predict

Time-series are sometimes problematic for cross-validation. For example,
suppose a pattern emerges in year 3 and stays for years 4-6, although it
wasn’t present in years 1 and 2.

So we choose an approach that is more well-suited for time series, forward
chaining, with procedure:

• fold 1 : training [1], test [2]

• fold 2 : training [1 2], test [3]

• fold 3 : training [1 2 3], test [4]

• fold 4 : training [1 2 3 4], test [5]

• fold 5 : training [1 2 3 4 5], test [6]

This more accurately models the situation visible at prediction time, where
you can model on past data and predict on forward-looking data and it also
gives you a sense of the dependence of your model on size of the data. In
summary, the training set should not contain information that occurs after
the test set.
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3.3 Cross-Validation Results

We let k = 9 since we have data in the range of a total of 9 years, 2007-2015.
Now we first use the training sample on the first 5 years. Then, we

continue adding one more year to the training samples.

3.4 Calculations

To find the errors, we will employ a mean vector to represent a set of samples.
The goodness of the model is assessed in terms of the MSE (mean-square-
error) evaluated on the testing set, as used in k-fold cross-validation.

From the k-fold cross-validation error formula adapted to our method
of choosing test and training sets in a forward chaining manner, for each
i = 1, ..., 9 we fit our prediction function (corresponding to the oracles) on
all points but those in the test fold, called r̂(i) and evaluate the error on the
points in the test fold.

CVi(r̂
(i)) =

1

nk

∑
i∈Ftest

(yi − r̂(i)(xi))2

where nk is the number of points in the test fold. Then we can average these
fold-based errors to yield a test error estimate for the entire model,

CV Err(r̂) =
1

k

k∑
i=1

CVi(r̂
(i))

Now to choose between models, compute the cross-validated errors for
each and then choose the model with the minimum cross-validated error.

So we have fitted the oracles based on data on the first 5 years, 6, 7,
and 8 years. Then we can use these to solve the problem for the data in
the test fold. This will give the set of r̂(i)(xi) which we will use with the
original data (averaged to a vector of returns so we can compare columns
where nk = 9) to evaluate the error. Now we will list the calculated errors
for each model, based on α, ε = 0.3.

Now, the average of these errors gives us CVErr(UCS) = 0.02473, CVErr(UM ) =
0.12356. We can clearly see that CVErr(UCS) < CVErr(UM ) by an approx-
imate factor of 10, and therefore the model to use would be UCS .

For choosing optimal parameters α, ε, we assume that according to the
definition of confidence regions that smaller values of the parameters (α, ε)
yield more accurate results.
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size of training data (yr) value of CVi(r̂
(i)),UM value of CVi(r̂

(i)),UCS
5 0.122413 0.023805

6 0.122504 0.02413677

7 0.1240449 0.0250294

8 0.1252704 0.02594487

Table 5: CVi(r̂
(i)) values for UCS ,UM model

4 Conclusion

In this project, two distinct optimization problems have been considered.
We have formulated the robust formulations of the optimization problems,
allowing the worst-case scenarios to be taken into consideration, under the
uncertainty sets we picked.

In the robust knapsack problem, the data-driven uncertainty set Uχ2
did

not yield more efficient results than the polyhedral uncertainty set; and their
solutions were both the same. This reflects a situation where the data-driven
sets do not make a big impact on the outcome.

In the portfolio optimization problem, the min-max portfolio problem is
of great interest, as interval uncertainty sets often produce portfolios with
very low return, motivating the use of data-driven sets; while ellipsoidal
sets reduce the problem to a standard model with a larger risk-aversion
parameter[3]. In our experiment, the polyhedral uncertainty set did not
yield a very meaningful solution, giving a vector of all zeros but for a single
asset. While comparing data-driven sets, we saw through cross-validation
that UCS is a better choice of uncertainty set than UM , and this is explained
through the way these sets were constructed. Since UM does not use the joint
distribution, it does not see the benefit to diversification of assets, and the
asset it chooses may vary greatly depending on the subset of data used since
it is difficult to estimate the best worst-case quantile on less samples of data.
UM does allocate to the asset that is shown to hold most of the returns. The
cross-validation error that was given as a result of UM was around 10 times
greater than the error of UCS , confirming in [2] that UCS is a good choice for
this problem, and this experiment has shown that the theory behind data-
driven uncertainty sets works. In the discrete optimization experiment, it
has been verified that the set matches the same standards as the polyhedral
uncertainty set. In the portfolio optimization experiment, the data-driven
sets yielded results clearly more accurate and insightful than the polyhedral
uncertainty set.
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5 Appendix

5.1 Robust Formulation of Min-max Mean-variance Portfo-
lio problem

In the Times Series optimization problem, in Equation 4, we can formulate
the min-max robust formulation as follows:

min
x

max
µ∈Sµ,Q∈SQ

−µTx+ λxTQx (8)

s.t. x ∈ Ω (9)

for uncertainty sets Sµ, SQ for µ,Q.
In [3], they formulate the mean-variance portfolio problem based on the

VaR and CVaR as a risk measure for the estimation risk.
CVaR as a risk measure is based on VaR, as a notion of worst case risk

measure.
In more detail, consider a random variable R which denotes a specific

risk, typically corresponding to loss. Assume that R has a density function
p(r).

The probability of R not exceeding a threshold α is:

Φ(α) =

∫
r≤α

p(r)dr, (10)

where we have the assumption that the probability distribution for R has
no jumps, and therefore Φ is everywhere continuous with respect to α.

Now given a confidence level β ∈ (0, 1) (ex, β = 95%) the associated
Value-at-Risk is:

V aRβ = min{α : Φ(α) ≥ β} (11)

with the corresponding CVaR given by:

CV aRβ = E(R|R ≥ V aRβ) =
1

1− β

∫
r≥V aRβ

rp(r)dr. (12)

Therefore, CV aRβ is the expected loss conditional on the loss being
greater than or equal to V aRβ and is used in [3].

By replacing the mean loss−µTx by a VaR measure of mean loss V aRµβ(−µTx),
they formulate the robust MV efficient portfolio problem’s worst case sce-
nario as,
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min
x

V aRµβ(−µTx) + λxTQx (13)

s.t. x ∈ Ω (14)

and apply the following theoretical motivation connecting the relation-
ship between VaR and CVaR with uncertainty sets from [2].

For any uncertainty set U constructed through the scheme, it implies
a probabilistic guarantee for P at level ε, and therefore it must satisfy ([2]
Proposition 1)

φU (x) ≥ V aRP
ε (x) ∀x ∈ Rd.

and it has been shown in [2] that the choice of sets UCS ,UM provide the
upper bound to this formulation above, and therefore we can write

min
x
− µTx+ λxTQx ∀µ ∈ V aRµβ ⊆ U (15)

s.t. x ∈ Ω. (16)

5.2 Plots
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Figure 1: Time Series for Ebay Returns, 5 assets
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Figure 2: Optimal Weights of 5 assets as calculated by UCS (magenta) and
UM (blue)
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Figure 3: Optimal Weights of 5 assets as calculated by UCS (magenta) and
UM (blue)
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Figure 4: Ebay efficient frontier calculated by UCS (magenta) and UM (blue)
for (α, δ) = (0.2, 0.2)
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Figure 5: Actual Mean Returns Ebay Returns, 5 assets (averaged over years
2007-2015)
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